Review of Complex Numbers

Cartesian Form and the Complex Plane

- Complex numbers and functions contain the number $i=\sqrt{-1}$.
- Any complex number or function z can be written in Cartesian form,

$$
\begin{equation*}
z=a+i b \tag{1}
\end{equation*}
$$

where a is the real part of z and b is the imaginary part of z, often denoted $a=\operatorname{Re}\{z\}$ and $b=\operatorname{Im}\{z\}$, respectively. Note that a and b are both real numbers.

- The form of Eq. 1is called Cartesian, because if we think of z as a two dimensional vector and $\operatorname{Re}\{z\}$ and $\operatorname{Im}\{z\}$ as its components, we can represent z as a point on the complex plane.

Polar Form

- As with a two dimensional vector, a complex number can be written in a second form, as a magnitude ρ and angle ϕ,

$$
\begin{gather*}
\rho=\sqrt{a^{2}+b^{2}} \tag{2}\\
\tan \phi=\frac{b}{a} \quad(+\pi \text { if } a<0) \tag{3}\\
a=\rho \cos \phi \tag{4}\\
b=\rho \sin \phi . \tag{5}
\end{gather*}
$$

where ϕ is called the complex phase of z.

Exponential Form

- Euler's formula relates a complex number on the unit circle expressed in terms of trigonometric functions to the complex exponential function.

$$
\begin{equation*}
e^{ \pm i \phi}=\cos \phi \pm i \sin \phi \tag{6}
\end{equation*}
$$

This can be shown by comparing the Taylor series expansions of $e^{i \phi}, \cos \phi$, and $\sin \phi$. It follows that a complex number z can be written in a third form,

$$
\begin{equation*}
z=\rho e^{i \phi} . \tag{7}
\end{equation*}
$$

- Eq. 7provides a useful way of looking at multiplication of complex numbers. The product $z_{1} z_{2}$ is obtained by multiplying magnitudes and adding complex phases,

$$
\begin{equation*}
z_{1} z_{2}=\rho_{1} \rho_{2} e^{i\left(\phi_{1}+\phi_{2}\right)} \tag{8}
\end{equation*}
$$

- Raising complex numbers to powers is also simplified by Eq. 7

$$
\begin{equation*}
(z)^{p}=\rho^{p} e^{i p \phi} . \tag{9}
\end{equation*}
$$

For example, we can evaluate $(i+1)^{4}$, noting that

$$
\begin{equation*}
1+i=\sqrt{2} e^{i \frac{\pi}{4}} \tag{10}
\end{equation*}
$$

and using Eq. 9, we find

$$
\begin{equation*}
(1+i)^{4}=(\sqrt{2})^{4}\left(e^{i \frac{\pi}{4}}\right)^{4}=4 e^{i \pi}=-4 \tag{11}
\end{equation*}
$$

Complex Conjugation and the Complex Square

- The complex conjugate of $z=a+i b=\rho e^{i \phi}$ is

$$
\begin{equation*}
z^{*}=a-i b=\rho e^{-i \phi} . \tag{12}
\end{equation*}
$$

It is obtained by changing the sign of i wherever it appears in z.

- To calculate the magnitude ρ directly from z written in any form, we use the complex square,

$$
\begin{equation*}
|z|^{2}=z^{*} z \tag{13}
\end{equation*}
$$

The complex square in terms of a and b is

$$
\begin{equation*}
|z|^{2}=(a+i b)(a-i b)=a^{2}+i b a-i a b-\left(i^{2}\right) b^{2}=a^{2}+b^{2}=\rho^{2} \tag{14}
\end{equation*}
$$

and in terms of ρ and ϕ

$$
\begin{equation*}
|z|^{2}=\rho e^{-i \phi} \rho e^{i \phi}=\rho^{2} . \tag{15}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\rho=\sqrt{|z|^{2}} . \tag{16}
\end{equation*}
$$

- We can also use complex conjugation to separate the real and imaginary parts of z.

$$
\begin{equation*}
z+z^{*}=a+i b+a-i b=2 a \tag{17}
\end{equation*}
$$

so

$$
\begin{equation*}
\operatorname{Re}\{z\}=\frac{z+z^{*}}{2} \tag{18}
\end{equation*}
$$

similarly

$$
\begin{equation*}
\operatorname{Im}\{z\}=\frac{z-z^{*}}{2 i} \tag{19}
\end{equation*}
$$

For example, it follows from Eq.'s 18and 19together with Eq. 6that

$$
\begin{align*}
& \operatorname{Re}\left\{e^{i \phi}\right\}=\cos \phi=\frac{e^{i \phi}+e^{-i \phi}}{2} \tag{20}\\
& \operatorname{Im}\left\{e^{i \phi}\right\}=\sin \phi=\frac{e^{i \phi}-e^{-i \phi}}{2 i} \tag{21}
\end{align*}
$$

Finding Roots

- $\sqrt[n]{z}$ has n unique values for integer n. For example, $\sqrt{4}=+2,-2$. In general, some or all of the n roots are complex numbers.
- The cyclical nature of angles means that

$$
\begin{equation*}
z=\rho e^{i \phi}, \rho e^{i(\phi+2 \pi)}, \rho e^{i(\phi+4 \pi)}, \rho e^{i(\phi+6 \pi)}, \ldots \tag{22}
\end{equation*}
$$

all represent the same number.

- However, if we take the nth root of these representations of z, we find that there are n unique results with complex phase angles less than 2π.

- Example

- The first 6 representations of $z=8$ are

$$
\begin{equation*}
8=8,8 e^{i 2 \pi}, 8 e^{i 4 \pi}, 8 e^{i 6 \pi}, 8 e^{i 8 \pi}, 8 e^{i 10 \pi} \tag{23}
\end{equation*}
$$

Taking the 6th root, we obtain

$$
\begin{equation*}
\sqrt[6]{8}=\sqrt{2}, \sqrt{2} e^{i \pi / 3}, \sqrt{2} e^{i 2 \pi / 3}, \sqrt{2} e^{i \pi}, \sqrt{2} e^{i 4 \pi / 3}, \sqrt{2} e^{i 5 \pi / 3} \tag{24}
\end{equation*}
$$

The rest of the roots have complex phase $\geq 2 \pi$ and all of them are alternate representations of the six roots above.

- Graphically,

- In general, to find the n roots of a number $z=\rho e^{i \phi}$, start with $\sqrt[n]{\rho} e^{i \phi / n}$. The remaining roots lie, along with the first, on a circle of radius $\sqrt[n]{\rho}$ in the complex plane at an equal spacing of $2 \pi / n$ in phase angle.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License: http: //creativecommons.org/licenses/by-sa/4.0/.
L.A. Riley (lriley@ursinus.edu), updated June 2021

