## The Quadratic Formula

- Equations of the form

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{1}
\end{equation*}
$$

are called quadratic equations. The quadratic formula

$$
\begin{equation*}
x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \tag{2}
\end{equation*}
$$

gives the solutions.

- The $\pm$ in Eq. 2 is an important detail. In general, there are two solutions to a quadratic equation. The two solutions are also called the roots of the equation.


## - Example

A ball is tossed directly upward from a height of 2.0 m above the ground with an initial velocity of $5.0 \mathrm{~m} / \mathrm{s}$. It is subject only to the force of gravity while in flight, so it has an acceleration of $-9.8 \mathrm{~m} / \mathrm{s}^{2}$. When does the ball reach a height of 3.0 m ? The position of the ball as a function of time is given by the equation

$$
\begin{equation*}
y=y_{o}+v_{o} t+\frac{1}{2} a t^{2} . \tag{3}
\end{equation*}
$$

## Solution

The equation with the given information is

$$
\begin{equation*}
3.0 \mathrm{~m}=2.0 \mathrm{~m}+(5.0 \mathrm{~m} / \mathrm{s}) t+\left(-4.9 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \tag{4}
\end{equation*}
$$

which in the form of Eq. 1 becomes

$$
\begin{equation*}
\left(-4.9 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}+(5.0 \mathrm{~m} / \mathrm{s}) t+(-1.0 \mathrm{~m})=0 \tag{5}
\end{equation*}
$$

We can identify $a=-4.9 \mathrm{~m} / \mathrm{s}^{2}, b=5.0 \mathrm{~m} / \mathrm{s}$, and $c=-1.0 \mathrm{~m}$ and apply Eq. 2,
$t=-\frac{5.0 \mathrm{~m} / \mathrm{s}}{2\left(-4.9 \mathrm{~m} / \mathrm{s}^{2}\right)} \pm \frac{\sqrt{(5.0 \mathrm{~m} / \mathrm{s})^{2}-4\left(-4.9 \mathrm{~m} / \mathrm{s}^{2}\right)(-1.0 \mathrm{~m})}}{2\left(-4.9 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.51 \mathrm{~s} \mp 0.24 \mathrm{~s}=0.27 \mathrm{~s}, 0.75 \mathrm{~s}$.


Figure 1: The left side of Eq. 5 plotted vs. $t$.

- To understand the two solutions, the graph of the left side of Eq. 5 shown in Fig. 1 is helpful. The extreme value of the quadratic occurs at $-\frac{b}{2 a}$. In the example, the extreme value is at 0.51 s .
- The roots of the quadratic lie $\frac{\sqrt{b^{2}-4 a c}}{2 a}$ to either side of $-\frac{b}{2 a}$. In the example, the two roots of the equation lie 0.24 s to either side of 0.51 s .
- A graph like this is often helpful in choosing appropriate solutions. In the example, both roots of the equation are appropriate. The ball reaches a height of 3.0 m twice, once going up, and once coming down.


## - Special Cases

## - Single solution

If $4 a c=b^{2}$, then $\sqrt{b^{2}-4 a c}=0$, and there is only one solution, $x=-\frac{b}{2 a}$. In the above example, this corresponds to 0.51 s , the time at which the ball reaches its maximum height.

- Complex solutions

If $4 a c>b^{2}$, then $\sqrt{b^{2}-4 a c}$ is imaginary (involves $i=\sqrt{-1}$ ). The above example does not have a physically reasonable solution corresponding to this situation. (This situation corresponds to heights never reached by the ball.)

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License: http: //creativecommons.org/licenses/by-sa/4.0/.
L.A. Riley (lriley@ursinus.edu), updated June 2021

