The determinant of a $2 \times 2$ matrix
\[M = \left( \begin{array}{cccc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array} \right)\]is given by
\[|M| = \left| \begin{array}{cccc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array} \right| = m_{11} \, m_{22} - m_{12} \, m_{21}\]The determinant of a $3 \times 3$ matrix
\[M = \left( \begin{array}{cccc} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{array} \right)\]can be written in terms of the determinants of $2 \times 2$ sub-matrices
\[|M| = \left| \begin{array}{cccc} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{array} \right| \\ = m_{11} \left| \begin{array}{cccc} m_{22} & m_{23} \\ m_{32} & m_{33} \end{array} \right| \,-\, m_{12} \left| \begin{array}{cccc} m_{21} & m_{23} \\ m_{31} & m_{33} \end{array} \right| \,+\, m_{13} \left| \begin{array}{cccc} m_{21} & m_{22} \\ m_{31} & m_{32} \end{array} \right|\]In general, each element of the top row of the matrix is multiplied by the determinant of the sub-matrix obtained by removing the row and column containing that element. The results are then added together with alternating sign, starting with a positive $m_{11}$ term. FigureĀ 1 shows the top-row elements and the associated sub-matrices and signs for the $2 \times 2$, $3 \times 3$, and $4 \times 4$ cases.
Figure 1: A visual guide to computing the determinants of $2 \times 2$, $3 \times 3$, and $4 \times 4$ matrices.
This work is licensed under the Creative Commons Attribution-ShareAlike
4.0 International License:
http://creativecommons.org/licenses/by-sa/4.0/.
L.A. Riley (lriley@ursinus.edu
), updated June 2021